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Abstract. We study the breakdown of the magnetization plateau at the magnetizationM =
MS/3 (MS is the saturation magnetization) of theS = 1/2 anisotropic spin chain with
ferromagnetic–ferromagnetic–antiferromagnetic interactions. We consider the model with the
isotropic ferromagnetic (trimer) couplingJF , and anisotropic antiferromagnetic coupling (Jx =
Jy = JAF andJz = 1JAF ). For the limit of largeγ ≡ JF /JAF , the model is equivalent to the
S = 3/2 XXZ chain with the exchange anisotropy1. There is a phase transition between the
plateau (small-γ ) and the no-plateau (large-γ ) regions. This phase transition is of the Berezinskii–
Kosterlitz–Thouless type, and we determine the phase boundary from the numerical diagonalization
data. For1 = 1, in particular, the phase transition between the plateau and the no-plateau regions
occurs at the pointγc = 15.4.

1. Introduction

Recently, there has been considerable interest in the magnetization processes of one-
dimensional quantum spin systems. In particular, magnetization plateaus have been observed
in experimental and theoretical works, for cases such as theS = 1/2 ferromagnetic–
ferromagnetic–antiferromagnetic trimerized spin chain [1, 2], theS = 1 spin chain with
bond alternation (and single-ion anisotropy) [3–6], theS = 3/2 spin chain with single-
ion anisotropy [7, 8],N -leg spin ladders [9, 10], theS = 1/2 zigzag chain with bond
alternation [11, 12], and the alternating-spin Heisenberg chain withS = 1/2 and 1 [13, 14].
This phenomenon stems from the strong quantum fluctuation due to the low dimensionality.
Extending the Lieb–Schultz–Mattis theorem [15], Oshikawa, Yamanaka, and Affleck [7] gave
a necessary condition for the appearance of a magnetization plateau as a fractional quantized
form, p(S − 〈m〉) = integer, wherep is the periodicity of the magnetic ground states in
the thermodynamic limit,S is the magnitude of the spin, and〈m〉 is the magnetization per
site. Because this is a necessary condition, it depends on the details of the model whether
the magnetization plateau exists or not, even if the condition is satisfied. In fact, there are no
magnetization plateaus for simple antiferromagnetic Heisenberg spin chains (except for zero
magnetization (the Haldane gap)) [16].
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In this paper, we study theS = 1/2 trimerizedXXZ spin chains in a magnetic fieldh:

H =
L∑
j=1

[−JF (H3j−2,3j−1(1) +H3j−1,3j (1)) + JAFH3j,3j+1(1)
]− hM

= JAF
L∑
j=1

[−γ (H3j−2,3j−1(1) +H3j−1,3j (1)) +H3j,3j+1(1)
]− hM (1)

where

Hj,k(1) = Sxj Sxk + Syj S
y

k +1SzjS
z
k . (2)

Sαj (α = x, y, z) is the spin-1/2 operator at thej th site,JF = γ JAF , JAF > 0, and

M =
3L∑
k=1

Szk .

We consider the parameter region−1 < 1 6 1. For 1 = 1, this is a model of
3CuCl2·2dioxane, for which Ajiroet al[17] measured the magnetization process. Hida studied
this model using the numerical diagonalization forL = 4, 6, 8 systems. In his results, for small
γ (γ < γc = 2–3) there exists a plateau in the magnetization process atM = M1/3 ≡ MS/3
whereMS = 3L/2 is the saturation magnetization, whereas it seems to disappear forγ > γc.
For 3CuCl2·2dioxane, Hida evaluated the trimer coupling asγ = 4.5. Roji and Miyashita [18]
calculated the magnetization curve by means of quantum Monte Carlo simulation forγ = 5
and a magnetization plateau did not appear. In these studies, however, the phase boundary
between the plateau and the no-plateau regions is not specified clearly.

For this model, schematic magnetization curves are shown in figure 1. For the weak-
ferromagnetic-coupling case (figure 1(a)), the magnetization plateau appears in the interval
hc1 < h < hc2, where the magnetization remains 1/3 of the saturation magnetization. In a
crude argument, two spinsS3j andS3j+1 (connected by antiferromagnetic bond) tend to form
a singlet, and the remainingL spins are aligned upward. In the limitγ →∞, the low-energy
behaviour of the present model effectively reduces to that of theS = 3/2XXZ spin chain [1]:

H̃ = J3/2

L∑
j=1

[
S̃xj S̃

x
j+1 + S̃yj S̃

y

j+1 +1S̃zj S̃
z
j+1

]
− h

L∑
j=1

S̃zj (3)
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Figure 1. Schematic magnetization curves: (a) forγ < γc; (b) for γ > γc. hc is the saturation
field. 〈m〉 is the magnetization per trimerM/L.
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whereJ3/2 = JAF /9 andS̃j = S3j−2 +S3j−1 +S3j , and in this limit it is believed that there is
no magnetization plateau atM = M1/3. Thus there should be a transition between the plateau
and the no-plateau (figure 1(b)) regions at the magnetizationM = M1/3. According to the
bosonization approach [2], this transition should be of the Berezinskii–Kosterlitz–Thouless
(BKT) type [19–21], and the width of the plateau1h(M = M1/3) = hc2 − hc1 near the
transition point behaves singularly as

1h ∼ exp(−C/√γc − γ ) (4)

whereC is a constant. This singular behaviour makes it difficult to study the critical properties
numerically.

In our previous paper [22], we studied anS = 1/2 trimerized spin chain:

H =
L∑
j=1

{
(1− t)[H3j−2,3j−1(1) +H3j−1,3j (1)] + (1 + 2t)H3j,3j+1(1)

}
. (5)

For this model, we found that in the region surrounded by the three points(1, t) = (−0.729, 0),
(−1, 1), and(−1,−0.5), there is a no-plateau region at the magnetizationM = MS/3. On
the basis of conformal field theory and renormalization group analysis, we determined this
phase boundary successfully. The multicritical point(1, t) = (−0.729, 0) is consistent with
the numerical Bethe-ansatzcalculation:(1, t) = (−0.729 043, 0) [10]. In the present study,
we apply the same analysis and the numerical approach to the model (1).

The plan of this paper is as follows. In the next section, to study the critical properties, we
consider an effective-continuum model by use of the bosonization technique. In section 3, we
firstly explain the method used to determine the phase boundary between the plateau and the
no-plateau regions atM = M1/3 numerically. Next, we show our numerical results for finite-
size systems, and give the boundary that we obtained between the plateau and the no-plateau
regions. We also check the consistency as regards the critical behaviour. The last section is
devoted to a summary and discussion.

2. Phase transition

To see the appearance and the disappearance of the magnetization plateau, we introduce the
effective-continuum model of the Hamiltonian (1). In the calculation, it is convenient to use
the unitary transformationSx3j−1→ −Sx3j−1, Sy3j−1→ −Sy3j−1, Sz3j−1→ Sz3j−1 for all j , and
the following parametrization [2]:

H = J0

L∑
j=1

[
(1 + δ⊥)(h⊥3j−2,3j−1 + h⊥3j−1,3j ) + (1− 2δ⊥)h⊥3j,3j+1

]
+ J0

L∑
j=1

[
(10 + δz)(S

z
3j−2S

z
3j−1 + Sz3j−1S

z
3j ) + (10 − 2δz)S

z
3j S

z
3j+1

]
− hM

(6)

h⊥j,k = Sxj Sxk + Syj S
y

k (7)

where

J0 = JAF 2γ + 1

3
δ⊥ = (γ − 1)/(2γ + 1)

10 = (−2γ +1)/(2γ + 1)

δz = −(γ +1)/(2γ + 1).

(8)
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Using the Jordan–Wigner transformation we firstly map the spin system to a spinless-fermion
system. Then linearizing the dispersion relation of the spinless fermions around the Fermi
point, and with the standard bosonization procedure, we obtain an effective-continuum model
which describes the low-energy properties of the original system.

The bosonized Hamiltonian of this model was obtained by Okamoto [2] as

H =
∫

dx

2π

[
vSK(π5)

2 +
vS

K

(
dφ

dx

)2
]

+ yφvS

∫
dx

2π
cos(
√

2φ + 2(kF − π/3)x) (9)

wherevS is the sound velocity of the system,5 is the momentum density conjugate toφ,
[φ(x),5(x ′)] = iδ(x − x ′), and

kF = π

2

(
1− M

MS

)
is the Fermi point of the spinless-fermion model. We define the lattice spacing as 1. Due to
the oscillation, the second term is important only forM = M1/3 (i.e., kF = π/3), and in the
following we consider the system at this magnetization. The parametersvS , K, andyφ are
related toJ0, δ⊥,z, and10 as

vS = J0

√
AC K =

√
C

A
yφvS = −πJ0(2δ⊥ + δz) (10)

where

A = 1

8π

(
1 +

5√
3π
10

)
C = 2π

(
1− 10√

3π

)
. (11)

The dual fieldθ conjugate toφ is defined by∂xθ = π5, and we make the identification
φ ≡ φ +

√
2π , θ ≡ θ +

√
2π . The spin operator in the continuum picture is given by

Sz(x) = 1

6
+

1√
2π

d

dx
φ(x) +

1

3
cos(
√

2φ + 2kF x − π/3). (12)

In the Hamiltonian (9), the first term has a scale invariance and the second term violates
it. For the free-field caseyφ = 0, the scaling dimension of the operator

√
2 cos
√

2φ depends
on the Gaussian couplingK asx = K/2. Thus the second term of equation (9) is relevant
or irrelevant according to whether the renormalized value ofK isK < 4 (x < 2) orK > 4
(x > 2). In the case whereyφ 6= 0, using the notationK = 4(1 +y0/2) nearK = 4, we have
the following renormalization group equations [21]:

dy0(L)

d lnL
= −yφ(L)2 dyφ(L)

d lnL
= −y0(L)yφ(L) (13)

whereL is an infrared cut-off. Fory0 > yφ > 0, the scaling fieldyφ is renormalized to 0,
andy0 goes to a finite value; the system is critical and the magnetization plateau does not
appear atM = M1/3. On the other hand, fory0 < yφ , yφ flows to infinity andK flows to 0.
The phase field is locked toφ = π/√2. For the spin model (1), this means that the second
term in equation (9) makes two spins connected by the antiferromagnetic bond form a singlet,
resulting in the appearance of the magnetization plateau atM1/3. The BKT transition occurs
aty0 = yφ , and at the transition point, we obtain

y0(L) = y0

y0 ln(L/L0) + 1
(14)

wherey0 (>0) andL0 are some constants. Thusy0(L) flows to 0 very slowly. Near the
transition point andy0 < yφ , the energy gap—that is, the width of the plateau—behaves as
equation (4) [21].
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3. Numerical method and results

3.1. Finite-size behaviour

In order to study the system numerically, let us consider the finite-size behaviour of the
model (9). The scaling dimension of the primary fieldOm,n = exp(im

√
2φ + in

√
2θ) for

yφ = 0 is given by

xm,n = K

2
m2 +

1

2K
n2. (15)

According to the finite-size scaling theory given by Cardy [23], the excitation energy of the
finite-size system at a critical point is related to the scaling dimension as

xm,n(L) = L

2πvS
(Em,n(L)− Eg(L)) (16)

whereEg(L) is the ground-state energy of anL-site system with periodic boundary conditions
(PBC). Near the BKT transition point (K ≈ 4), the excitation energy is written as

L

2πvS
1Em,0(L) = K(L)

2
m2 = 2

(
1 +

y0(L)

2

)
m2 (17)

L

2πvS
1E0,n(L) = 1

2K(L)
n2 = 1

8

(
1− y0(L)

2

)
n2 (18)

for integerm andn. In the spinless-fermion language, the integer variablem is the difference
in number between the left- and the right-moving fermions. The variablen is the increment
of the fermion number, and relates to the magnetization asn = M −M1/3. Thus considering
equation (14), we have the logarithmic size corrections for the finite-size spectrum.

In the numerical calculation for finite-size systems, we calculate the energy of the model
(1), fixing the magnetizationM = ∑

Szj and withh = 0. If the magnetization curve is
continuous at the magnetizationM = M1/3, the two valuesh±(M1/3/L):

h+(M1/3/L) = E(M1/3 + 1, L)− E(M1/3, L)

h−(M1/3/L) = E(M1/3, L)− E(M1/3− 1, L)
(19)

coincide atL→∞; also,

lim
L→∞

h±(M1/3/L) = h(1/2)
and this is the magnetic field in the thermodynamic limit. HereE(M,L) is the lowest energy
for theL-site system with the magnetizationM andh = 0. Then the excitation energy in
equation (18) can be calculated as

1E0,n = E(M1/3 + n,L)− nh(1/2)− E(M1/3, L). (20)

For the critical system, we have1E0,n = 1E0,−n. Averaging these two values we can elim-
inate the magnetic field as

1E0,±n = 1

2
[E(M1/3 + n,L) +E(M1/3− n,L)] − E(M1/3, L). (21)

In the spinless-fermion language, the magnetic field plays the role of the chemical potential

h(M1/3/L) = [E(M1/3 + 1, L)− E(M1/3− 1, L)]/2.

If the two limits

lim
L→∞

h+(M1/3/L) lim
L→∞

h−(M1/3/L)
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do not coincide, there exists a magnetization plateau at the magnetizationM1/3, and the width
of the plateau is given by

1h(1/2) = lim
L→∞

[h+(M1/3/L)− h−(M1/3/L)] = 2 lim
L→∞

1E0,±1(L).

To determine the BKT transition point, we apply the method proposed by Nomura and
Kitazawa [24], in which a level crossing of some excitation levels is used. Under the twisted
boundary conditions (TBC)Sx,y3L+1 = −Sx,y1 , Sz3L+1 = Sz1, the primary operatorOm,n shifts
to the operatorOm+1/2,n in the quantum spin chain [26–28]. For the scaling dimensions of
operators

√
2 cos(φ/

√
2) and

√
2 sin(φ/

√
2), we have the following finite-size corrections:

xc±1/2,0(L) =
1

2
+

1

4
y0(L) +

1

2
yφ(L)

xs±1/2,0(L) =
1

2
+

1

4
y0(L)− 1

2
yφ(L).

(22)

The dependence of the couplingyφ comes from the first-order perturbation of the second term
in equation (9) [25]. (Due to the charge-neutrality condition in the model (9), the operators
O0,n are not corrected in this order.)

Writing yφ = y0(1 + t) near the transition point, we have

xc±1/2,0(L) =
1

2
+

3

4
y0(L)

(
1 +

2

3
t

)
xs±1/2,0(L) =

1

2
− 1

4
y0(L)(1 + 2t).

(23)

On the other hand, from equation (18) the scaling dimension ofO0,±2 is given by

x0,±2(L) = 1

2
− 1

4
y0(L) = L

2πvS
1E0,±2(L). (24)

From these equations, we see thatx0,±2 andxs±1/2,0 cross linearly at the transition point (t = 0).

The energies corresponding to the operators
√

2 cos(φ/
√

2) and
√

2 sin(φ/
√

2) are
obtained from two low-lying energies with the twisted boundary conditions as

1Ec±1/2,0 =
2πvS
L

xc±1/2,0(L) = ETBC(M1/3, L, P = 1)− E(M1/3, L)

1Es±1/2,0 =
2πvS
L

xs±1/2,0(L) = ETBC(M1/3, L, P = −1)− E(M1/3, L).

(25)

HereETBC(M1/3, L, P ) are two low-lying energies under the TBC. The two states with these
energies are distinguished by the parity of the space inversionP : Sj → S3L−j+1 (in the sine–
Gordon model (9),φ→−φ). Thus the energy differences1E0,±2 and1Es±1/2,0 should cross
at the transition point.

3.2. Results

In the numerical calculation, we consider finite-size systems (L = 4, 6, 8) with the PBC and
the TBC. Using the above-mentioned degeneracy at the transition point, we determine the
phase boundary and also check the universality class of the phase transition.

For the PBC, the Hamiltonian is invariant under the translationSj → Sj+3, and the
corresponding eigenvalue is the wavenumberq = 2πk/L (k = −L/2 + 1, . . . , L/2). In the
whole region, the lowest energy states withM = M1/3,M1/3±2 have the wavenumberq = 0
and the parity of the space inversionP = 1.

Figure 2 shows the behaviour of1E0,±2 and1Ec,s±1/2,0 forL = 6,1 = 0.5 systems. There
is a level crossing between1Es±1/2,0 and1E0,±2, as is described in equations (23) and (24).
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The size dependence of the crossing point is shown in figure 3, from which the extrapolated
value is estimated asγc(1 = 0.5) = 5.75.
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Figure 2. Energy differences1Ec±1/2,0 (�),1Es±1/2,0 (◦), and1E0,±2 (+) for theL = 6,1 = 0.5
system. These values are defined in equations (21) and (25) in the text. We see a level crossing
between1Es±1/2,0 and1E0,±2.
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Figure 3. The size dependence of the crossing pointγc for 1 = 0.5.

In figure 4 we show the crossing points forL = 4, 6, 8 on the1–γ plane. The line is the
extrapolated value in the polynomials of 1/L2, and this is the boundary between the plateau
and the no-plateau regions. This line increases with1 from γ = 0 at1 = −1 toγ = 15.4 at
1 = 1. This is explained by the fact that when we decrease1 from 1, the dimerization effect
in the antiferromagnetic bond is weakened.

As a consistency check with the critical theory, we calculate the following averaged scaling
dimension:

xc±1/2,0(L) + 3xs±1/2,0(L)

4
. (26)

Taking this average, we can eliminate the leading logarithmic correction (14) for finite-size
systems at the critical pointt = 0 (see equation (23)). To calculate the scaling dimension, we
need the sound velocityvS . This can be calculated using the lowest energy withM = M1/3

and the wavenumberq = 2π/L (corresponding to the U(1) current):

vS = lim
L→∞

E(MS/3, L, q = 2π/L)− E(MS/3, L)

2π/L
. (27)
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Figure 4. Crossing points forL = 4 (+), L = 6 (◦), andL = 8 (•). The solid line shows the
extrapolated values.

Figure 5 shows the extrapolated value of the averaged scaling dimension (26) and the bare
value of theL = 8 system on the transition line. The averaged scaling dimension is very close
to the expected valuex = 1/2, whereas the bare valuesxc±1/2,0(L) andxs±1/2,0(L) are far from
x = 1/2 due to the logarithmic size correction.
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Figure 5. Extrapolated values of the averaged scaling dimension(xc±1/2,0 + 3xs±1/2,0)/4 on the
transition line (•). We also show the bare values ofxc±1/2,0(L = 6,�) andxs±1/2,0(L = 6, ◦).

To confirm the universality class of the phase transition for theM = M1/3 systems, we
also calculate the conformal anomaly numberc from [29,30]

E(MS/3, L)

L
= ε(MS/3)− πvSc

6L2
+ · · · . (28)

For the BKT critical point, the conformal anomaly number isc = 1. We see that the valuec is
close to 1 within the error of a few per cent (e.g.c = 1.01 for1 = 1). Thus we can conclude
that the transition between the plateau and the no-plateau region atM = M1/3 is of the BKT
type.

4. Summary and discussion

We studied the plateau–no-plateau transition of the model (1) for the magnetizationM = MS/3.
For smallγ there is a plateau in the magnetization process, while for largeγ there is no plateau
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(figure 1). By use of the effective-continuum model and the renormalization group method, we
showed that this quantum phase transition is of the Berezinskii–Kosterlitz–Thouless type. On
the basis of conformal field theory and renormalization group analysis, we argued for a finite-
size spectrum and determined the phase boundary (figure 4) using a level crossing of special
excitations (figure 2). This boundary runs from (1, γ ) = (−1, 0) to (1, γ ) = (1, 15.4). We
also checked the consistency of the critical theory and the numerical calculation, and concluded
that the phase transition is of the BKT type.

The extrapolated critical point for1 = 1 isγ = 15.4, which is somewhat larger than the
value from previous experimental and numerical studies [1,17,18]. One possible explanation
for this discrepancy is as follows. The width of the plateau near the transition point is given
by equation (4), and the coefficient in the exponential,C, is large for1 = 1. Thus the
narrow-plateau-width region (that is, the small-gap region) is widely ranged. This means
that it is difficult to estimate the plateau width1h directly from the numerical calculation
and also at finite temperatures. According to Kosterlitz [21], the coefficientC is described
asC ∝ 1/

√
y0, and from figure 5, we see thaty0 (=yφ) is small at the transition point for

1 = 1. For theS = 3/2 antiferromagnetic Heisenberg chain corresponding to the large-
γ limit, the Gaussian couplingK is calculated asK ≈ 4.4 (the compactification radius is
R = (2πK)−1/2 = 0.95/

√
8π ) in reference [7], which is slightly larger than the critical value

K = 4. This fact supports a large value ofγc for 1 = 1.
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